论文标题

通过机器学习增强电子能量损失光谱法,将复杂红外等离激子纳米结构中的物理不同机制分开

Separating physically distinct mechanisms in complex infrared plasmonic nanostructures via machine learning enhanced electron energy loss spectroscopy

论文作者

Kalinin, Sergei V., Roccapriore, Kevin M., Cho, Shin Hum, Milliron, Delia J., Vasudevan, Rama, Ziatdinov, Maxim, Hachtel, Jordan A.

论文摘要

低损失电子能量损失光谱(EEL)已成为探索等离子现象在纳米水平上定位的首选技术,因此需要对3D光谱数据集的身体行为进行分析。对于具有较高本地化的系统,线性构造方法为探索性分析提供了极好的基础,而在更复杂的系统中,需要大量组件才能准确捕获真正的等离激子响应,并且组件的物理解释性变得不确定。在这里,我们探索了基于机器学习的低损失鳗鱼数据分析,该数据对支持红外共振的异质自组装单层膜的异质自组装单层膜。我们提出了一种对鳗鱼数据集进行监督分析的途径,该数据集将具有物理不同光谱响应的膜区域分开和分类。这些分类显示出鲁棒性,可以准确捕获复合纳米结构的常见时尚对比,并可以在不同数据集之间传输,以允许对样品的大面积进行高通量分析。因此,它可以用作基于贝叶斯优化的自动化实验工作流的基础,如在现场数据上所示。我们进一步证明了使用非线性自动编码器(AE)与AE潜在空间中的聚类相结合的系统响应的高度降低表示,这些表示可以洞悉不依赖于操作员输入和偏见的相关物理学。这些受监督和无监督工具的结合提供了对纳米级等离子现象的互补见解。

Low-loss electron energy loss spectroscopy (EELS) has emerged as a technique of choice for exploring the localization of plasmonic phenomena at the nanometer level, necessitating analysis of physical behaviors from 3D spectral data sets. For systems with high localization, linear unmixing methods provide an excellent basis for exploratory analysis, while in more complex systems large numbers of components are needed to accurately capture the true plasmonic response and the physical interpretability of the components becomes uncertain. Here, we explore machine learning based analysis of low-loss EELS data on heterogeneous self-assembled monolayer films of doped-semiconductor nanoparticles, which support infrared resonances. We propose a pathway for supervised analysis of EELS datasets that separate and classify regions of the films with physically distinct spectral responses. The classifications are shown to be robust, to accurately capture the common spatiospectral tropes of the complex nanostructures, and to be transferable between different datasets to allow high-throughput analysis of large areas of the sample. As such, it can be used as a basis for automated experiment workflows based on Bayesian optimization, as demonstrated on the ex situ data. We further demonstrate the use of non-linear autoencoders (AE) combined with clustering in the latent space of the AE yields highly reduced representations of the system response that yield insight into the relevant physics that do not depend on operator input and bias. The combination of these supervised and unsupervised tools provides complementary insight into the nanoscale plasmonic phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源