论文标题
$ c^*$ - Cuntz-Pimsner代数的通信功能
$C^*$-correspondence functoriality of Cuntz-Pimsner algebras
论文作者
论文摘要
我们构建了一个函数,该函数将$ c^*$ - 对应到其Cuntz-Pimsner代数。我们域类别中的对象是$ c^*$ - 对应关系,形态是$ c^*$的同构类别,可满足某些条件。作为应用程序,我们恢复了Muhly和Solel的众所周知的结果。实际上,我们表明功能性使我们取得了更广泛的结果:强烈的莫里塔等效$ c^*$ - 通信具有莫里塔等效的cuntz-pimsner代数。
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions. As an application, we recover a well-known result of Muhly and Solel. In fact, we show that functoriality leads us to a more generalized result: strongly Morita equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras.