论文标题

理解在基于文本的心理健康支持中表达的同理心的计算方法

A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support

论文作者

Sharma, Ashish, Miner, Adam S., Atkins, David C., Althoff, Tim

论文摘要

移情对于成功的心理健康支持至关重要。移情测量主要发生在同步,面对面的设置中,可能不会转化为异步基于文本的上下文。由于数百万人使用基于文本的平台进行心理健康支持,因此在这些情况下了解同理心是至关重要的。在这项工作中,我们提出了一种计算方法,以了解在线心理健康平台中如何表达同理心。我们开发了一个新颖的统一理论上的框架,以表征基于文本的对话中同理心的交流。我们收集并共享使用此移情框架注释的10K(后,响应)配对的语料库以及注释证据(Prinationes)。我们开发了一个基于罗伯塔的多任务双重编码模型,用于识别对话中的同理心并提取其预测的基础理由。实验表明,我们的方法可以有效地识别同理心对话。我们进一步应用该模型来分析235K心理健康互动,并表明用户不会随着时间的流逝而自我学习,从而揭示了移情培训和反馈的机会。

Empathy is critical to successful mental health support. Empathy measurement has predominantly occurred in synchronous, face-to-face settings, and may not translate to asynchronous, text-based contexts. Because millions of people use text-based platforms for mental health support, understanding empathy in these contexts is crucial. In this work, we present a computational approach to understanding how empathy is expressed in online mental health platforms. We develop a novel unifying theoretically-grounded framework for characterizing the communication of empathy in text-based conversations. We collect and share a corpus of 10k (post, response) pairs annotated using this empathy framework with supporting evidence for annotations (rationales). We develop a multi-task RoBERTa-based bi-encoder model for identifying empathy in conversations and extracting rationales underlying its predictions. Experiments demonstrate that our approach can effectively identify empathic conversations. We further apply this model to analyze 235k mental health interactions and show that users do not self-learn empathy over time, revealing opportunities for empathy training and feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源