论文标题

在退化的随机洛伦兹系统中稳态的敏感性

Sensitivity of steady states in a degenerately-damped stochastic Lorenz system

论文作者

Foldes, Juraj, Glatt-Holtz, Nathan E., Herzog, David P.

论文摘要

我们研究了解决方案的稳定性,用于洛伦兹'63模型的随机驱动和退化的版本。具体而言,我们证明,当一个温度组件之一中缺乏阻尼时,当噪声作用于对流变量上时,系统具有独特的不变概率度量。另一方面,如果在垂直温度曲线上存在正增长项,我们证明没有可正常化的状态。我们的方法依赖于非平凡的lyapunov函数的推导和分析,这些函数可确保动力学的正复发或无效/瞬时/瞬时。

We study stability of solutions for a randomly driven and degenerately damped version of the Lorenz '63 model. Specifically, we prove that when damping is absent in one of the temperature components, the system possesses a unique invariant probability measure if and only if noise acts on the convection variable. On the other hand, if there is a positive growth term on the vertical temperature profile, we prove that there is no normalizable invariant state. Our approach relies on the derivation and analysis of non-trivial Lyapunov functions which ensure positive recurrence or null-recurrence/transience of the dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源