论文标题

相对惊喜作为单次量化器的差异

The variance of relative surprisal as single-shot quantifier

论文作者

Boes, Paul, Ng, Nelly H. Y., Wilming, Henrik

论文摘要

到目前为止,(相对)惊奇(相对)惊奇的方差主要在信息理论中发挥作用,因为它量化了渐近级的主要级校正。在这里,我们全面研究了它来得出单次摄影的用途(量子)信息理论。我们表明,它为单次设置的量子状态之间的近似状态转变提供了真正的足够和必要条件,而无需进一步优化。我们还阐明了它与平滑的最小和最大凝胶膜的关系,并仅使用标准(相对)熵和(相对)惊奇的标准(相对)熵和方差来构建资源理论的单调。这立即导致在随机过程中熵产生的下限增强。我们建立了相对惊奇方差的某些特性,这将有助于进一步研究,例如违反亚添加性的统一连续性和上限。在我们的结果中,我们进一步得出了(相对)熵的简单且物理上吸引人的公理单拍表征,我们认为这是独立的。我们通过几种应用来说明我们的结果,包括沿着landauer擦除的互连性,到催化状态过渡的催化剂的必要维度和Boltzmann的H Theorem的催化剂限制。

The variance of (relative) surprisal, also known as varentropy, so far mostly plays a role in information theory as quantifying the leading order corrections to asymptotic i.i.d.~limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We show that it gives genuine sufficient and necessary conditions for approximate state-transitions between pairs of quantum states in the single-shot setting, without the need for further optimization. We also clarify its relation to smoothed min- and max-entropies, and construct a monotone for resource theories using only the standard (relative) entropy and variance of (relative) surprisal. This immediately gives rise to enhanced lower bounds for entropy production in random processes. We establish certain properties of the variance of relative surprisal which will be useful for further investigations, such as uniform continuity and upper bounds on the violation of sub-additivity. Motivated by our results, we further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy which we believe to be of independent interest. We illustrate our results with several applications, ranging from interconvertibility of ergodic states, over Landauer erasure to a bound on the necessary dimension of the catalyst for catalytic state transitions and Boltzmann's H-theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源