论文标题
电子显微镜体积的微管跟踪
Microtubule Tracking in Electron Microscopy Volumes
论文作者
论文摘要
我们提出了一种微管跟踪的方法。我们的方法首先识别一组可能属于微管的体素集。与先前的工作类似,我们列举了这些体素之间的潜在边缘,我们在候选图中代表。通过在候选图中选择节点和边缘,通过求解在微管结构上结合生物学先验的约束优化问题,可以找到微管的轨道。为此,我们提出了一种新型的整数线性编程公式,与先前的ART相比,准确性的加速度为三个数量级和53%的速度(对三个1.2 x 4 x 4 $ $ m $ m $ m的果蝇神经组织进行了评估)。我们还提出了一个方案,以块智慧的方式解决优化问题,该方案允许分布式跟踪,并且是处理非常大的电子显微镜体积所必需的。最后,我们发布了用于微管跟踪的基准数据集,此处用于培训,测试和验证,由八个30 x 1000 x 1000 x 1000 voxel块(1.2 x 4 x 4 $μ$ m)的密集注释的微管组成。
We present a method for microtubule tracking in electron microscopy volumes. Our method first identifies a sparse set of voxels that likely belong to microtubules. Similar to prior work, we then enumerate potential edges between these voxels, which we represent in a candidate graph. Tracks of microtubules are found by selecting nodes and edges in the candidate graph by solving a constrained optimization problem incorporating biological priors on microtubule structure. For this, we present a novel integer linear programming formulation, which results in speed-ups of three orders of magnitude and an increase of 53% in accuracy compared to prior art (evaluated on three 1.2 x 4 x 4$μ$m volumes of Drosophila neural tissue). We also propose a scheme to solve the optimization problem in a block-wise fashion, which allows distributed tracking and is necessary to process very large electron microscopy volumes. Finally, we release a benchmark dataset for microtubule tracking, here used for training, testing and validation, consisting of eight 30 x 1000 x 1000 voxel blocks (1.2 x 4 x 4$μ$m) of densely annotated microtubules in the CREMI data set (https://github.com/nilsec/micron).