论文标题

关于DP颜色功能的两个问题的答案

Answers to Two Questions on the DP Color Function

论文作者

Mudrock, Jeffrey A., Thomason, Seth

论文摘要

DP颜色是列表着色的概括,该列表是由Dvočhkand Postle在2015年推出的。图形的色多项式是自20世纪初期以来一直在研究的一个概念。图$ g $的色度多项式表示为$ p(g,m)$,等于$ g $的适当$ m $颜色的数量。 2019年,考尔(Kaul)和穆德(Mudrock)引入了用于DP色的色度多项式的类似物。具体来说,图$ g $的DP颜色函数表示为$ p_ {dp}(g,m)$。 Kaul和Mudrock提出的两个基本问题是:(1)对于任何图形$ g $带有$ n $ vertices,是否是$ p(g,m)-p_ {dp}(g,m)= o(m^{n-3})$ as $ m \ rightArrow \ rightArrow \ rightarrow \ infty $? (2)对于每个图$ g $,是否存在$ p,n \ in \ mathbb {n} $,以至于$ p_ {dp}(k_p \ vee g,m)= p(k_p \ vee g,m)$,每当$ m \ m \ geq n $吗?我们表明,这两个问题的答案是肯定的。实际上,即使我们需要$ p = 1 $,我们也向(2)显示答案是肯定的。

DP-coloring is a generalization of list coloring that was introduced in 2015 by Dvořák and Postle. The chromatic polynomial of a graph is a notion that has been extensively studied since the early 20th century. The chromatic polynomial of graph $G$ is denoted $P(G,m)$, and it is equal to the number of proper $m$-colorings of $G$. In 2019, Kaul and Mudrock introduced an analogue of the chromatic polynomial for DP-coloring; specifically, the DP color function of graph $G$ is denoted $P_{DP}(G,m)$. Two fundamental questions posed by Kaul and Mudrock are: (1) For any graph $G$ with $n$ vertices, is it the case that $P(G,m)-P_{DP}(G,m) = O(m^{n-3})$ as $m \rightarrow \infty$? and (2) For every graph $G$, does there exist $p,N \in \mathbb{N}$ such that $P_{DP}(K_p \vee G, m) = P(K_p \vee G, m)$ whenever $m \geq N$? We show that the answer to both these questions is yes. In fact, we show the answer to (2) is yes even if we require $p=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源