论文标题
AIN:具有近似推理网络的快速准确序列标记
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
论文作者
论文摘要
线性链条件随机场(CRF)模型是最广泛使用的神经序列标记方法之一。确切的概率推理算法(例如前向后和Viterbi算法)通常应用于CRF模型的训练和预测阶段。但是,这些算法需要顺序计算,这使得不可能并行化。在本文中,我们建议对CRF模型采用可行的近似变异推理算法。基于该算法,我们设计了一个近似推理网络,该网络可以与神经CRF模型的编码相连接以形成一个端到端网络,该网络可与平行化,以进行更快的训练和预测。经验结果表明,与传统的CRF方法相比,我们提出的方法的解码速度提高了12.7倍,并具有竞争精度。
The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.