论文标题

如何在社交媒体上展示新闻:编辑新闻头条的因果分析,以促进用户参与度

How-to Present News on Social Media: A Causal Analysis of Editing News Headlines for Boosting User Engagement

论文作者

Park, Kunwoo, Kwak, Haewoon, An, Jisun, Chawla, Sanjay

论文摘要

为了吸引更广泛的受众并优化新闻文章的流量,媒体通常会运行社交媒体帐户,并与简短的文字摘要共享其内容。尽管在共享文章中写下引人注目的信息的重要性,研究界对哪些类型的编辑策略有效地促进观众的参与并没有充分了解。在这项研究中,我们旨在通过使用数据驱动的方法来分析媒体媒体的当前实践来填补空白。我们首先构建了原始新闻文章的平行语料库及其相应的推文,该推文分享了八个媒体。然后,我们探讨了这些媒体如何针对原始头条新闻编辑的推文以及这种变化的影响。为了估计编辑新闻头条在社交媒体参与中共享的效果,我们提出了一项系统的分析,该分析结合了一种带有深度学习的因果推理技术;使用倾向分数匹配,与反事实案例相比,它可以估算编辑样式的潜在优势()优势,这些情况与类似的新闻文章共享不同的样式。根据各种编辑样式的分析,我们报告了各种插座样式的常见和不同的影响。为了了解各种编辑样式的效果,媒体可以自己应用我们易于使用的工具。

To reach a broader audience and optimize traffic toward news articles, media outlets commonly run social media accounts and share their content with a short text summary. Despite its importance of writing a compelling message in sharing articles, the research community does not own a sufficient understanding of what kinds of editing strategies effectively promote audience engagement. In this study, we aim to fill the gap by analyzing media outlets' current practices using a data-driven approach. We first build a parallel corpus of original news articles and their corresponding tweets that eight media outlets shared. Then, we explore how those media edited tweets against original headlines and the effects of such changes. To estimate the effects of editing news headlines for social media sharing in audience engagement, we present a systematic analysis that incorporates a causal inference technique with deep learning; using propensity score matching, it allows for estimating potential (dis-)advantages of an editing style compared to counterfactual cases where a similar news article is shared with a different style. According to the analyses of various editing styles, we report common and differing effects of the styles across the outlets. To understand the effects of various editing styles, media outlets could apply our easy-to-use tool by themselves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源