论文标题
taub-nut-ads的全息图4
Aspects of Holography of Taub-NUT-AdS4
论文作者
论文摘要
在本文中,我们考虑了taub-nut-ads $ _4 $的全息解释的各个方面。我们审查了我们的早期结果,这些结果表明tnads $ _4 $产生了具有持续涡度的全息三维形成性液体。然后,我们通过考虑散装标量波动来研究MISNER串的全息相关性。标量波动自然地组织为$ su(2)\ times \ mathbb {r} $ ismetry代数的表示。如果我们需要字符串的隐形性,我们会获得一个类似狄拉克的量化,将标量场模式与螺母电荷相关的频率。由于后一个数量决定了边界流体的总涡度通量,因此我们认为这种假设允许对TNADS $ _4 $的全息解释为{\ it non-Discipative} superfluid,其激发是量化涡流的。另外,如果我们将MISNER字符串视为物理对象(最近提倡的热力学上所提倡的物理对象,则消除了上述量化条件,并且我们发现TNADS $ _4 $对应于全息流体,其耗散性能由复杂的较大的Quasinormal bumber bumber bumbers bumber bultimal of Bultimal of Bult bumber bultimal bumb。我们表明,这种准标准模式可能令人惊讶地组织为等轴测代数的无限二二维非单身表示。
In this paper we consider aspects of the holographic interpretation of Taub-NUT-AdS$_4$. We review our earlier results which show that TNAdS$_4$ gives rise to a holographic three-dimensional conformal fluid having constant vorticity. We then study the holographic relevance of the Misner string by considering bulk scalar fluctuations. The scalar fluctuations organize naturally into representations of the $SU(2)\times \mathbb{R}$ isometry algebra. If we require the string's invisibility we obtain a Dirac-like quantization relating the frequency of the scalar field modes to the NUT charge. As the latter quantity determines the total vorticity flux of the boundary fluid, we argue that such an assumption allows for a holographic interpretation of TNAdS$_4$ as a {\it non-dissipative} superfluid whose excitations are quantized vortices. Alternatively, if we regard the Misner string as a physical object, as has recently been advocated for thermodynamically, the aforementioned quantization conditions are removed, and we find that TNAdS$_4$ corresponds to a holographic fluid whose dissipative properties are probed as usual by the complex quasinormal modes of the bulk fluctuations. We show that such quasinormal modes are, perhaps surprisingly, organized into infinite-dimensional non-unitary representations of the isometry algebra.