论文标题

知识图中的类型增强关系预测

Type-augmented Relation Prediction in Knowledge Graphs

论文作者

Cui, Zijun, Kapanipathi, Pavan, Talamadupula, Kartik, Gao, Tian, Ji, Qiang

论文摘要

知识图(KGS)对于许多现实世界的应用非常重要,但是它们通常以实体之间缺失的关系形式遭受不完整的信息。知识图的完成(也称为关系预测)是推断出现有事实的任务。大多数现有工作是通过最大程度地提高观察到的实例级级三元组的可能性来提出的。但是,对本体论信息的关注不多,例如实体和关系的类型信息。在这项工作中,我们提出了一种类型的关系预测(TARP)方法,在该方法中,我们同时将类型信息和实例级信息应用于关系预测。特别是,类型信息和实例级信息分别编码为先前的概率和可能性,并通过遵循贝叶斯的规则结合使用。我们提出的TARP方法的性能要比四个基准数据集的最先进方法要好得多:FB15K,FB15K-237,Yago26K-906和DB111K-174。此外,我们表明TARP可显着提高数据效率。更重要的是,从特定数据集提取的类型信息可以通过建议的TARP模型很好地概括到其他数据集。

Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on four benchmark datasets: FB15K, FB15K-237, YAGO26K-906, and DB111K-174. In addition, we show that TaRP achieves significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to other datasets through the proposed TaRP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源