论文标题

GoCor:将全球优化的对应量带入您的神经网络

GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network

论文作者

Truong, Prune, Danelljan, Martin, Van Gool, Luc, Timofte, Radu

论文摘要

特征相关层是许多计算机视觉问题的关键神经网络模块,涉及图像对之间的密集对应关系。它通过评估从两个图像中的位置对提取的特征向量之间的密集标量来预测对应体积。但是,当删除图像中多个相似区域时,此点对点功能比较不足,从而严重影响了最终任务的性能。我们提出了GoCor,这是一个完全可区分的密集匹配模块,可作为特征相关层的直接替换。我们的模块生成的对应卷是一个内部优化过程的结果,该过程明确说明了场景中的相似区域。此外,我们的方法能够有效地学习空间匹配先验,以解决进一步的匹配歧义。我们在广泛的消融实验中分析了我们的GoCor模块。当集成到最新的网络中时,我们的方法大大优于几何匹配,光流和密集的语义匹配的特征相关层。代码和训练有素的模型将在github.com/prunetruong/gocor上提供。

The feature correlation layer serves as a key neural network module in numerous computer vision problems that involve dense correspondences between image pairs. It predicts a correspondence volume by evaluating dense scalar products between feature vectors extracted from pairs of locations in two images. However, this point-to-point feature comparison is insufficient when disambiguating multiple similar regions in an image, severely affecting the performance of the end task. We propose GOCor, a fully differentiable dense matching module, acting as a direct replacement to the feature correlation layer. The correspondence volume generated by our module is the result of an internal optimization procedure that explicitly accounts for similar regions in the scene. Moreover, our approach is capable of effectively learning spatial matching priors to resolve further matching ambiguities. We analyze our GOCor module in extensive ablative experiments. When integrated into state-of-the-art networks, our approach significantly outperforms the feature correlation layer for the tasks of geometric matching, optical flow, and dense semantic matching. The code and trained models will be made available at github.com/PruneTruong/GOCor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源