论文标题

使用混合构成线性编程的动态障碍物聚类策略进行轨迹计划

Trajectory planning with a dynamic obstacle clustering strategy using Mixed-Integer Linear Programming

论文作者

Battagello, Vinicius Antonio, Soma, Nei Yoshihiro, Afonso, Rubens Junqueira Magalhaes

论文摘要

在本文中,我们提出了一种技术,该技术将障碍物分配给用于避免碰撞的群集通过混合构成编程。该策略可以减少用于避免碰撞的二进制变量的数量,从而导致计算成本降低,这是对模型预测控制方法的应用,并实时使用混合构成编程公式。此外,在执行轨迹计划的相同优化问题中确定了将障碍物分配到集群和簇的大小,从而产生了最佳的群集选择。提出了仿真结果,以说明该提案的应用。

In this paper we propose a technique that assigns obstacles to clusters used for collision avoidance via Mixed-Integer Programming. This strategy enables a reduction in the number of binary variables used for collision avoidance, thus entailing a decrease in computational cost, which has been a hindrance to the application of Model Predictive Control approaches with Mixed-Integer Programming formulations in real-time. Moreover, the assignment of obstacles to clusters and the sizes of the clusters are decided within the same optimization problem that performs the trajectory planning, thus yielding optimal cluster choices. Simulation results are presented to illustrate an application of the proposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源