论文标题
使用Robinson Tilings在离散的Heisenberg组上有限类型的有限类型的大幅度转移
A strongly aperiodic shift of finite type on the discrete Heisenberg group using Robinson tilings
论文作者
论文摘要
我们明确地为离散的海森伯格组构建了有限类型的强烈上调的子迁移。我们的示例建立在由于拉斐尔·鲁滨逊(Raphael Robinson)而导致的飞机上古典座椅上。通过利用小组的结构并提出其他本地规则以修剪剩余的周期性行为,将这些瓷砖扩展到海森堡集团,我们在$ \ mathbb z^2 $ cosets上保持了丰富的投射亚壮道。此外,通过在密集的一组构型上可逆的地图上,获得的次移因子在强烈的,最小的SOFIC移动上。
We explicitly construct a strongly aperiodic subshift of finite type for the discrete Heisenberg group. Our example builds on the classical aperiodic tilings of the plane due to Raphael Robinson. Extending those tilings to the Heisenberg group by exploiting the group's structure and posing additional local rules to prune out remaining periodic behavior we maintain a rich projective subdynamics on $\mathbb Z^2$ cosets. In addition the obtained subshift factors onto a strongly aperiodic, minimal sofic shift via a map that is invertible on a dense set of configurations.