论文标题

银河流出中的冲击 - 媒体相互作用-I。具有对数正态密度分布的云层

Shock-multicloud interactions in galactic outflows -- I. Cloud layers with log-normal density distributions

论文作者

Banda-Barragán, Wladimir, Brüggen, Marcus, Federrath, Christoph, Wagner, Alexander Y., Scannapieco, Evan, Cottle, J'Neil

论文摘要

我们报告了与分形多云层相互作用的冲击的三维流体动力模拟($ {\ cal m _ {\ rm shock}} \ geq 4 $)。电击形成云系统的演变由四个阶段组成:一个震动的阶段,其中产生了反射和折射冲击的阶段,一个压缩阶段,向前冲击压缩云材料,由内部加热和冲击重新加速触发的膨胀阶段以及剪切阶段的混合阶段产生了剪切构成能力。我们将多云层与狭窄($σ_ρ= 1.9 \barρ$)和宽($σ_ρ= 5.9 \barρ$)进行比较,该log-normal密度分布的特征是MACH $ \ 5 $ supersonsonsonsonsonsonsonsonsonsonsonsons-suppersonons turn驱动的螺旋螺旋和压缩模式。我们的模拟表明,流出的云材料包含其天然环境密度结构的烙印。多云系统的动态和破坏取决于层中的孔隙率和云层数量。与更多孔的“压缩”层相比,“螺线管”层混合少,产生较少的湍流,加速更快,并形成更连贯的混合气壳。同样,具有更多Cloudlets的多云系统通过屏蔽效果淬灭混合并增强动量传递。在所有模型中,弥漫性混合气体的质量负载均有效,但是直接致密的气体夹带效率高。密集的气体仅在压缩云中存活,但速度低。如果对冲击时间的时间进行归一化,则演变显示了冲击马赫数$ \ geq10 $和不同的云生成种子的不变性,对于较低的马赫数和较薄的云层,缩放率略有弱。多云系统也比单云系统具有更好的收敛属性,每个云半径的分辨率为$ 8 $,足以捕获其整体动力学。

We report three-dimensional hydrodynamical simulations of shocks (${\cal M_{\rm shock}}\geq 4$) interacting with fractal multicloud layers. The evolution of shock-multicloud systems consists of four stages: a shock-splitting phase in which reflected and refracted shocks are generated, a compression phase in which the forward shock compresses cloud material, an expansion phase triggered by internal heating and shock re-acceleration, and a mixing phase in which shear instabilities generate turbulence. We compare multicloud layers with narrow ($σ_ρ=1.9\barρ$) and wide ($σ_ρ=5.9\barρ$) log-normal density distributions characteristic of Mach $\approx 5$ supersonic turbulence driven by solenoidal and compressive modes. Our simulations show that outflowing cloud material contains imprints of the density structure of their native environments. The dynamics and disruption of multicloud systems depend on the porosity and the number of cloudlets in the layers. `Solenoidal' layers mix less, generate less turbulence, accelerate faster, and form a more coherent mixed-gas shell than the more porous `compressive' layers. Similarly, multicloud systems with more cloudlets quench mixing via a shielding effect and enhance momentum transfer. Mass loading of diffuse mixed gas is efficient in all models, but direct dense gas entrainment is highly inefficient. Dense gas only survives in compressive clouds, but has low speeds. If normalised with respect to the shock-passage time, the evolution shows invariance for shock Mach numbers $\geq10$ and different cloud-generating seeds, and slightly weaker scaling for lower Mach numbers and thinner cloud layers. Multicloud systems also have better convergence properties than single-cloud systems, with a resolution of $8$ cells per cloud radius being sufficient to capture their overall dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源