论文标题
舞蹈:朝着音乐舞会舞蹈综合的舞蹈动作单元
ChoreoNet: Towards Music to Dance Synthesis with Choreographic Action Unit
论文作者
论文摘要
舞蹈和音乐是两种高度相关的艺术形式。综合舞蹈动作最近引起了很多关注。大多数以前的作品通过直接音乐与人类骨骼关键点映射进行音乐与舞蹈合成。同时,人类编舞的人以两阶段的方式设计了音乐的舞蹈动作:他们首先设计了多个编舞舞蹈单元(CAUS),每个舞蹈单元都有一系列舞蹈动作,然后根据音乐的节奏,旋律和情感来安排CAU序列。受这些的启发,我们系统地研究了这种两阶段的编舞方法,并构建了一个数据集以结合这种编舞知识。基于构造的数据集,我们设计了一个两阶段的音乐到舞蹈综合框架架架,以模仿人类的编排程序。我们的框架首先设计了一个CAU预测模型,以学习音乐和CAU序列之间的映射关系。之后,我们设计了一个空间周期内介绍模型,将CAU序列转换为连续的舞蹈动作。实验结果表明,所提出的舞蹈表的表现优于基线方法(根据CAU BLEU评分为0.622,用户研究得分为1.59)。
Dance and music are two highly correlated artistic forms. Synthesizing dance motions has attracted much attention recently. Most previous works conduct music-to-dance synthesis via directly music to human skeleton keypoints mapping. Meanwhile, human choreographers design dance motions from music in a two-stage manner: they firstly devise multiple choreographic dance units (CAUs), each with a series of dance motions, and then arrange the CAU sequence according to the rhythm, melody and emotion of the music. Inspired by these, we systematically study such two-stage choreography approach and construct a dataset to incorporate such choreography knowledge. Based on the constructed dataset, we design a two-stage music-to-dance synthesis framework ChoreoNet to imitate human choreography procedure. Our framework firstly devises a CAU prediction model to learn the mapping relationship between music and CAU sequences. Afterwards, we devise a spatial-temporal inpainting model to convert the CAU sequence into continuous dance motions. Experimental results demonstrate that the proposed ChoreoNet outperforms baseline methods (0.622 in terms of CAU BLEU score and 1.59 in terms of user study score).