论文标题
马尔可夫数据的在线非负CP-dementary学习
Online nonnegative CP-dictionary learning for Markovian data
论文作者
论文摘要
在线张量分解(OTF)是从流传输多模式数据中学习低维气功能的基本工具。尽管最近已经研究了OTF的各种算法和理论方面,但即使对于I.I.D,仍然缺乏对目标函数的固定点的一般融合保证,而无需任何不连贯或稀疏假设。案件。在这项工作中,我们介绍了一种新颖的算法,该算法从给定的张张量值数据流中学习了candecomp/parafac(CP)基础,该数据在一般限制下,包括诱导学习CP基础的可解释性的非负性约束。我们证明,我们的算法几乎可以肯定地收敛到目标函数的一组固定点,假设数据张量的序列是由基本的马尔可夫链生成的。我们的设置涵盖了古典I.I.D.情况以及广泛的应用程序上下文,包括由独立或MCMC采样生成的数据流。我们的结果缩小了全局收敛分析中的OTF和在线矩阵分解之间的差距,\ Commhl {对于CP分解}。在实验上,我们表明,对于合成和现实世界数据,对于非负张量分解任务而言,我们的算法的收敛速度要比标准算法快得多。此外,我们在图像,视频和时间序列数据中的一组示例中演示了我们的算法的实用性,以通过多种方式利用张量结构来说明人们如何从相同的张量数据中学习质量不同的CP--y词。
Online Tensor Factorization (OTF) is a fundamental tool in learning low-dimensional interpretable features from streaming multi-modal data. While various algorithmic and theoretical aspects of OTF have been investigated recently, a general convergence guarantee to stationary points of the objective function without any incoherence or sparsity assumptions is still lacking even for the i.i.d. case. In this work, we introduce a novel algorithm that learns a CANDECOMP/PARAFAC (CP) basis from a given stream of tensor-valued data under general constraints, including nonnegativity constraints that induce interpretability of the learned CP basis. We prove that our algorithm converges almost surely to the set of stationary points of the objective function under the hypothesis that the sequence of data tensors is generated by an underlying Markov chain. Our setting covers the classical i.i.d. case as well as a wide range of application contexts including data streams generated by independent or MCMC sampling. Our result closes a gap between OTF and Online Matrix Factorization in global convergence analysis \commHL{for CP-decompositions}. Experimentally, we show that our algorithm converges much faster than standard algorithms for nonnegative tensor factorization tasks on both synthetic and real-world data. Also, we demonstrate the utility of our algorithm on a diverse set of examples from image, video, and time-series data, illustrating how one may learn qualitatively different CP-dictionaries from the same tensor data by exploiting the tensor structure in multiple ways.