论文标题

从空中图像中感知流量

Perceiving Traffic from Aerial Images

论文作者

Adaimi, George, Kreiss, Sven, Alahi, Alexandre

论文摘要

配备不同传感器的无人机或无人机已在许多地方部署,尤其是用于城市交通监控或最后一英里的交付。它提供了控制给定实时肥胖的流量的不同方面的能力,这是运输和智能城市未来的重要支柱。随着此类机器的越来越多的使用,在无人机数据集上使用了许多先前在前面摄像头上实现高性能的先前最先进的对象探测器。当应用于从此类数据集捕获的高分辨率空中图像时,它们无法推广到广泛的对象尺度。为了解决此限制,我们提出了一种称为蝴蝶探测器的对象检测方法,该方法是针对空中图像中检测对象而定制的。我们扩展了字段的概念并介绍蝴蝶田,蝴蝶场是一种复合字段,描述了输出特征的空间信息以及检测到的对象的比例。为了克服遮挡和视角变化,可能会阻碍定位过程,我们在指向对象中心的相关蝴蝶矢量之间采用了投票机制。我们在两个公开可用的无人机数据集(UAVDT和Visdrone2019)上评估了蝴蝶探测器,并表明它在实时剩下的同时表现优于先前的最先进方法。

Drones or UAVs, equipped with different sensors, have been deployed in many places especially for urban traffic monitoring or last-mile delivery. It provides the ability to control the different aspects of traffic given real-time obeservations, an important pillar for the future of transportation and smart cities. With the increasing use of such machines, many previous state-of-the-art object detectors, who have achieved high performance on front facing cameras, are being used on UAV datasets. When applied to high-resolution aerial images captured from such datasets, they fail to generalize to the wide range of objects' scales. In order to address this limitation, we propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images. We extend the concept of fields and introduce butterfly fields, a type of composite field that describes the spatial information of output features as well as the scale of the detected object. To overcome occlusion and viewing angle variations that can hinder the localization process, we employ a voting mechanism between related butterfly vectors pointing to the object center. We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源