论文标题

扩展的聚谷氨酸蛋白的随机动力学模型的参数推断

Parameter inference for a stochastic kinetic model of expanded polyglutamine proteins

论文作者

Fisher, Holly F., Boys, Richard J., Gillespie, Colin S., Proctor, Carole J., Golightly, Andrew

论文摘要

细胞中蛋白质聚集体的存在是许多与人类年龄有关的疾病(例如亨廷顿氏病)的已知特征。使用固定参数值在细胞中扩展的聚谷氨酰胺(PolyQ)蛋白的动态演化模型中使用固定参数值已被用于更好地了解生物系统,如何重点药物开发以及如何构建基于未来实验室的体外实验实验的更有效的设计。但是,关于系统的某些参数的值存在很大的不确定性。当前,通过临时尝试调整参数以使模型输出与实验数据相匹配。由于数据仅提供对潜在生物学过程的部分见解,因此问题更加复杂:数据仅包括细胞死亡的比例和在几个时间点具有包含体的细胞的比例,并因测量误差而破坏。 在这种情况下,开发推理过程以估计模型参数是一项重要任务。无法准确评估与观察到的比例相对应的模型概率,因此通过反复模拟模型中的实现来估计推理算法中它们的估计。通常,这种方法在计算上非常昂贵,因此我们为关键数量构建高斯工艺模拟器,并围绕这些快速随机近似的算法进行重新制定算法。我们通过检查模型的拟合度并强调了模型参数的适当值,从而导致对基本生物学过程(例如聚集动力学)的新见解。

The presence of protein aggregates in cells is a known feature of many human age-related diseases, such as Huntington's disease. Simulations using fixed parameter values in a model of the dynamic evolution of expanded polyglutamine (PolyQ) proteins in cells have been used to gain a better understanding of the biological system, how to focus drug development and how to construct more efficient designs of future laboratory-based in vitro experiments. However, there is considerable uncertainty about the values of some of the parameters governing the system. Currently, appropriate values are chosen by ad hoc attempts to tune the parameters so that the model output matches experimental data. The problem is further complicated by the fact that the data only offer a partial insight into the underlying biological process: the data consist only of the proportions of cell death and of cells with inclusion bodies at a few time points, corrupted by measurement error. Developing inference procedures to estimate the model parameters in this scenario is a significant task. The model probabilities corresponding to the observed proportions cannot be evaluated exactly and so they are estimated within the inference algorithm by repeatedly simulating realisations from the model. In general such an approach is computationally very expensive and we therefore construct Gaussian process emulators for the key quantities and reformulate our algorithm around these fast stochastic approximations. We conclude by examining the fit of our model and highlight appropriate values of the model parameters leading to new insights into the underlying biological processes such as the kinetics of aggregation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源