论文标题

大属渐近属,用于在随机表面上分离闭合的大地学的长度

Large genus asymptotics for lengths of separating closed geodesics on random surfaces

论文作者

Nie, Xin, Wu, Yunhui, Xue, Yuhao

论文摘要

在本文中,我们研究了属$ g $的随机双曲表面的基本几何量,相对于模量空间$ \ mathcal {m} _g $的Weil-Petersson测量。我们表明,随着$ g $进入无限,\ Mathcal {m} _g $ in Infinity y Infinity a in Infinity:(1)$ x $的分离收缩期约为$ 2 \ log g $; (2)宽度约为$ \ frac {\ log g} {2} $,围绕$ x $的分离收缩曲线; (3)$ x $的最短封闭的多晶格的最短长度约为$ 2 \ log g $。作为应用程序,我们还讨论了极端分离收缩期,非简单收缩期的渐近行为以及最短分离封闭的多晶格的期望值,因为$ g $将用于无限。

In this paper, we investigate basic geometric quantities of a random hyperbolic surface of genus $g$ with respect to the Weil-Petersson measure on the moduli space $\mathcal{M}_g$. We show that as $g$ goes to infinity, a generic surface $X\in \mathcal{M}_g$ satisfies asymptotically: (1) the separating systole of $X$ is about $2\log g$; (2) there is a half-collar of width about $\frac{\log g}{2}$ around a separating systolic curve of $X$; (3) the length of shortest separating closed multi-geodesics of $X$ is about $2\log g$. As applications, we also discuss the asymptotic behavior of the extremal separating systole, the non-simple systole and the expectation value of lengths of shortest separating closed multi-geodesics as $g$ goes to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源