论文标题

谐波地图流量几乎是形态图

Harmonic map flow for almost-holomorphic maps

论文作者

Song, Chong, Waldron, Alex

论文摘要

令$σ$为紧凑的表面和$ n $ a $ compactkähler歧管,具有非负溶性双形性曲率。对于谐波图流的解决方案,从几乎旋晶地图$σ\到n $(在能源意义上)开始,每个单数时间的极限连续延伸到气泡点上,并且没有颈部出现。

Let $Σ$ be a compact oriented surface and $N$ a compact Kähler manifold with nonnegative holomorphic bisectional curvature. For a solution of harmonic map flow starting from an almost-holomorphic map $Σ\to N$ (in the energy sense), the limit at each singular time extends continuously over the bubble points and no necks appear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源