论文标题
经典Liénard振荡器的显微镜量子概括
Microscopic quantum generalization of classical Liénard oscillators
论文作者
论文摘要
基于系统 - 储存模型和非线性耦合的适当选择,我们探索了经典liénard系统的显微镜量子泛化。利用相关C数的振荡器相干状态和规范的热分布,我们衍生了减少系统的量子Langevin方程,该方程接收单个或多个极限周期。已经表明,即使在真空激发的情况下,波动散落关系形式的详细平衡也可以保留吸引子的动力稳定性。在平均场描述中,在我们的理论方案中,在我们的理论方案中得出了雷利,范德波尔和其他几种liénard振荡器的量子版本。
Based on a system-reservoir model and an appropriate choice of nonlinear coupling, we have explored the microscopic quantum generalization of classical Liénard systems. Making use of oscillator coherent states and canonical thermal distributions of the associated c-numbers, we have derived the quantum Langevin equation of the reduced system which admits of single or multiple limit cycles. It has been shown that detailed balance in the form of fluctuation-dissipation relation preserves the dynamical stability of the attractors even in case of vacuum excitation. The quantum versions of Rayleigh, Van der Pol and several other variants of Liénard oscillators are derived as special cases in our theoretical scheme within a mean-field description.