论文标题
BV形式主义的约束:六维超对称性及其曲折
Constraints in the BV formalism: six-dimensional supersymmetry and its twists
论文作者
论文摘要
我们在Batalin-Vilkovisky形式主义的概括中触及扰动地制定了Abelian六维$ \ MATHCAL {N} =(2,0)$理论。使用此描述,我们在扰动级别计算了全体形态和非最小曲折。该计算取决于在Abelian Tensor多重方面的超对称代数的$ L_ \ Infty $动作,我们将详细描述。我们的表述自然出现在纯净的超级场外形式主义中,但是理解它需要对BV形式主义进行预叠术的概括,这是受迪拉克(Dirac)的约束理论的启发。全体形态的扭曲由$ \ Mathcal {n} =(1,0)$ hypermultiplet的符号价值的全体形态玻色子组成,以及一个negenerate holomororthic sholomororthic coclic cococlic cococlic coclic coclic cococlic cococlic coclic coclic coclic coclic as y Mathcal {N} =(n}雅各布。我们检查了我们的公式和结果与在各个维度减少的已知结果相匹配,并将霍明型扭曲与Kodaira-Spencer理论进行比较。减少后,将我们的形式主义与五维阳米尔斯理论相匹配,导致一些与电磁二元性有关的问题;我们对非扰动分辨率提出了一些猜测。
We formulate the abelian six-dimensional $\mathcal{N}=(2,0)$ theory perturbatively, in a generalization of the Batalin-Vilkovisky formalism. Using this description, we compute the holomorphic and non-minimal twists at the perturbative level. This calculation hinges on the existence of an $L_\infty$ action of the supersymmetry algebra on the abelian tensor multiplet, which we describe in detail. Our formulation appears naturally in the pure spinor superfield formalism, but understanding it requires developing a presymplectic generalization of the BV formalism, inspired by Dirac's theory of constraints. The holomorphic twist consists of symplectic-valued holomorphic bosons from the $\mathcal{N}=(1,0)$ hypermultiplet, together with a degenerate holomorphic theory of holomorphic coclosed one-forms from the $\mathcal{N}=(1,0)$ tensor multiplet, which can be interpreted as representing the intermediate Jacobian. We check that our formulation and our results match with known ones under various dimensional reductions, as well as comparing the holomorphic twist to Kodaira-Spencer theory. Matching our formalism to five-dimensional Yang-Mills theory after reduction leads to some issues related to electric-magnetic duality; we offer some speculation on a nonperturbative resolution.