论文标题
CSI2Image:使用生成对抗网络从通道状态信息进行的图像重建
CSI2Image: Image Reconstruction from Channel State Information Using Generative Adversarial Networks
论文作者
论文摘要
这项研究旨在找到获取物理空间信息的无线传感能力的上限。这是一个具有挑战性的目标,因为目前,无线传感研究继续成功获得新现象。因此,尽管无法获得完整的答案,但在这里迈出了一步。为了实现这一目标,提出了基于生成对抗网络(GAN)的新型通道状态信息(CSI)信息(CSI)信息的CSI2Image。可以通过检查重建的图像捕获所需的物理空间信息来估算使用无线传感的物理信息类型。展示了三种类型的学习方法:Gen \ -er \ -a \ - 仅限学习,仅GAN学习和混合学习。评估CSI2Image的性能很困难,因为必须评估图像的清晰度和所需物理空间信息的存在。为了解决此问题,还提出了使用对象检测库的定量评估方法。使用IEEE 802.11ac压缩CSI实施CSI2Image,评估结果表明该图像已成功地重建。结果表明,gen \ -er \ -a \ -tor学习足以解决简单的无线传感问题,但是在复杂的无线传感问题中,gans对于用更准确的物理空间信息重建通用图像很重要。
This study aims to find the upper limit of the wireless sensing capability of acquiring physical space information. This is a challenging objective, because at present, wireless sensing studies continue to succeed in acquiring novel phenomena. Thus, although a complete answer cannot be obtained yet, a step is taken towards it here. To achieve this, CSI2Image, a novel channel-state-information (CSI)-to-image conversion method based on generative adversarial networks (GANs), is proposed. The type of physical information acquired using wireless sensing can be estimated by checking wheth\-er the reconstructed image captures the desired physical space information. Three types of learning methods are demonstrated: gen\-er\-a\-tor-only learning, GAN-only learning, and hybrid learning. Evaluating the performance of CSI2Image is difficult, because both the clarity of the image and the presence of the desired physical space information must be evaluated. To solve this problem, a quantitative evaluation methodology using an object detection library is also proposed. CSI2Image was implemented using IEEE 802.11ac compressed CSI, and the evaluation results show that the image was successfully reconstructed. The results demonstrate that gen\-er\-a\-tor-only learning is sufficient for simple wireless sensing problems, but in complex wireless sensing problems, GANs are important for reconstructing generalized images with more accurate physical space information.