论文标题
与卷积神经网络的多光谱卫星数据的最佳使用
Optimal Use of Multi-spectral Satellite Data with Convolutional Neural Networks
论文作者
论文摘要
卫星图像的分析将证明是追求可持续发展的关键工具。尽管卷积神经网络(CNN)在自然图像分析中取得了很大的收益,但它们在多光谱卫星图像中的应用(其中输入图像具有大量通道)仍然相对尚未探索。在本文中,我们将利用多波段信息的不同方法与CNN进行了比较,证明了所有比较所有方法在农业植被(Vineyards)的语义分割任务的方法。我们表明,使用域专家选择的频段的标准行业实践会导致比其他方法的测试准确性明显差。具体来说,我们比较:使用专家指定的频段;使用所有可用的乐队;在输入频段上学习注意力图;并利用贝叶斯优化来决定乐队的选择。我们表明,仅使用所有可用的频段信息已经增加了测试时间性能,并证明可以使用这项工作中首先应用于频段选择的贝叶斯优化可用于进一步提高准确性。
The analysis of satellite imagery will prove a crucial tool in the pursuit of sustainable development. While Convolutional Neural Networks (CNNs) have made large gains in natural image analysis, their application to multi-spectral satellite images (wherein input images have a large number of channels) remains relatively unexplored. In this paper, we compare different methods of leveraging multi-band information with CNNs, demonstrating the performance of all compared methods on the task of semantic segmentation of agricultural vegetation (vineyards). We show that standard industry practice of using bands selected by a domain expert leads to a significantly worse test accuracy than the other methods compared. Specifically, we compare: using bands specified by an expert; using all available bands; learning attention maps over the input bands; and leveraging Bayesian optimisation to dictate band choice. We show that simply using all available band information already increases test time performance, and show that the Bayesian optimisation, first applied to band selection in this work, can be used to further boost accuracy.