论文标题

轨迹依赖的电子激发,通过玻璃速度周围和下方的重离子和下方的重离子激发

Trajectory-dependent electronic excitations by light and heavy ions around and below the Bohr velocity

论文作者

Lohmann, Svenja, Holeňák, Radek, Primetzhofer, Daniel

论文摘要

我们提出了证明轨迹依赖性电子激发在低离子速度下的实验,该速度预期离子主要与分离式价电子相互作用。 The energy loss of H$^+$, H$_2 ^+$, He$^+$, B$^+$, N$^+$, Ne$^+$, $^{28/29}$Si$^+$ and Ar$^+$ in self-supporting silicon membranes was analysed along channelled and random trajectories in a transmission approach.对于所有离子,我们观察到电子停止取决于晶体方向的差异。对于较重的离子,通常发现通道和随机几何形状之间的能量差差异更为明显,与质子相比,增加了离子能量的增加。由于使用的离子速度处的核心电子激发效率低下,我们通过与靶原子的离子碰撞发生的回离事件来解释这些结果,该靶原子的近距离碰撞,这对通道轨迹受到了严重抑制。这些过程导致轨迹依赖的平均电荷状态,这强烈影响能量损失。该效果的强度似乎表现出Z $ _1 $振荡,而NE的最小值。此外,我们证明了我们的实验几何形状的简单性会导致结果,可以用时间依赖性密度功能理论充当极好的基准系统,以动态计算固体的电子系统。

We present experiments demonstrating trajectory-dependent electronic excitations at low ion velocities, where ions are expected to primarily interact with delocalized valence electrons. The energy loss of H$^+$, H$_2 ^+$, He$^+$, B$^+$, N$^+$, Ne$^+$, $^{28/29}$Si$^+$ and Ar$^+$ in self-supporting silicon membranes was analysed along channelled and random trajectories in a transmission approach. For all ions, we observe a difference in electronic stopping dependent on crystal orientation. For heavier ions, the energy-loss difference between channelling and random geometry is generally found more pronounced, and, in contrast to protons, increases for decreasing ion energy. Due to the inefficiency of core-electron excitations at employed ion velocities, we explain these results by reionization events occurring in close collisions of ions with target atoms, which are heavily suppressed for channelled trajectories. These processes result in trajectory-dependent mean charge states, which strongly affects the energy loss. The strength of the effect seems to exhibit a Z$_1$ oscillation with an observed minimum for Ne. We, furthermore, demonstrate that the simplicity of our experimental geometry leads to results that can serve as excellent benchmark systems for dynamic calculations of the electronic systems of solids using time-dependent density functional theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源