论文标题
非lipschitz域中发散椭圆运算符的dirichlet特征值的估计值
Estimates of Dirichlet eigenvalues of divergent elliptic operators in non-Lipschitz domains
论文作者
论文摘要
我们研究了差异形式的光谱估计值均匀的椭圆运算符$ - \ textrm {div} [a(z)\ nabla f(z)] $,在有界的非lipschitz中的dirichlet边界条件简单地连接域,$ω\ subset \ subset \ subset \ mathbb c $。建议的方法基于Sobolev空间上的准信息组成算子,并应用了加权的Poincaré-Sobolev不等式。
We study spectral estimates of the divergence form uniform elliptic operators $-\textrm{div}[A(z) \nabla f(z)]$ with the Dirichlet boundary condition in bounded non-Lipschitz simply connected domains $Ω\subset \mathbb C$. The suggested method is based on the quasiconformal composition operators on Sobolev spaces with applications to the weighted Poincaré-Sobolev inequalities.