论文标题

从动态系统中学习兴趣的数量,以偶然反转

Learning Quantities of Interest from Dynamical Systems for Observation-Consistent Inversion

论文作者

Mattis, Steven, Steffen, Kyle Robert, Butler, Troy, Dawson, Clint N., Estep, Donald

论文摘要

动态系统来自科学和工程的多种数学模型。一个普遍的挑战是量化对模型输入(参数)的不确定性,这些不确定性与可观察量的不确定性(QOI)对不确定性的定量表征相对应。为此,我们考虑了一个随机逆问题(SIP),该解决方案是通过回调概率度量描述的解决方案。我们将其称为观察剂的解决方案,因为其随后通过QOI地图向前推向符合模型输出上观察到的概率分布。在QOI之间进行区分,可用于求解SIP和任意模型输出数据。在动态系统中,模型输出数据通常以在特定时间窗口记录的一系列状态变量响应给出。因此,由于观察频率,输出数据的尺寸可以轻松超过$ \ MATHCAL {O}(1E4)$或更多,并且从该数据中正确选择或构建QOI并不是不言而喻的。我们提出了一个新的框架,即学习不确定数量(LUQ),以促进SIP的可动力系统解决方案。给定预测的(模拟)时间序列和(嘈杂)观察到的数据的集合,LUQ提供了用于过滤数据的例程,无监督的基础动力学学习,分类观测值和特征提取以学习QOI地图。随后,将时间序列数据转换为与QOI相关的基础预测和观察到的分布的样品,以便可计算对SIP的溶液。在引入和演示LUQ之后,为在生活和物理科学中产生的各种动力学系统提供了几种SIP的数值结果。为了获得科学的可重复性,我们提供了与LUQ实施Python的链接,以及在本手稿中重现结果所需的所有数据和脚本。

Dynamical systems arise in a wide variety of mathematical models from science and engineering. A common challenge is to quantify uncertainties on model inputs (parameters) that correspond to a quantitative characterization of uncertainties on observable Quantities of Interest (QoI). To this end, we consider a stochastic inverse problem (SIP) with a solution described by a pullback probability measure. We call this an observation-consistent solution, as its subsequent push-forward through the QoI map matches the observed probability distribution on model outputs. A distinction is made between QoI useful for solving the SIP and arbitrary model output data. In dynamical systems, model output data are often given as a series of state variable responses recorded over a particular time window. Consequently, the dimension of output data can easily exceed $\mathcal{O}(1E4)$ or more due to the frequency of observations, and the correct choice or construction of a QoI from this data is not self-evident. We present a new framework, Learning Uncertain Quantities (LUQ), that facilitates the tractable solution of SIPs for dynamical systems. Given ensembles of predicted (simulated) time series and (noisy) observed data, LUQ provides routines for filtering data, unsupervised learning of the underlying dynamics, classifying observations, and feature extraction to learn the QoI map. Subsequently, time series data are transformed into samples of the underlying predicted and observed distributions associated with the QoI so that solutions to the SIP are computable. Following the introduction and demonstration of LUQ, numerical results from several SIPs are presented for a variety of dynamical systems arising in the life and physical sciences. For scientific reproducibility, we provide links to our Python implementation of LUQ and to all data and scripts required to reproduce the results in this manuscript.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源