论文标题
光谱扩展有限元方法用于音调晶体中的带结构计算
Spectral extended finite element method for band structure calculations in phononic crystals
论文作者
论文摘要
在本文中,我们使用结构化的高阶(频谱)有限元网格上的扩展有限元法(X-FEM)计算一维音响复合材料的带结构。在使用有限元分析中的不合格富集时,X-FEM允许使用结构化有限元网格,这些元件网格不符合孔和夹杂物的几何形状。这消除了在语音形状优化和拓扑优化研究中进行重新讨论的需求。在二维中,我们采用曲线(圆形)几何形状的ZIER表示有理B {é},并构建合适的材料富集函数来模拟两相复合材料。采用了弹性动力学本本特征问题的Bloch制定。通过均匀的数值集成方案实现了使用多项式集成的弱形积分的有效计算 - 一种使用Euler的均质函数定理和Stokes定理将整合到域的边界的方法。幽灵惩罚稳定在被孔切割的有限元素上使用。提出了对穿孔的(定义为水平集的圆孔,椭圆孔和孔)以及两相音子晶体上的带状结构计算,以确认该方法在结构化的高阶光谱有限元元件上的声音准确性和最佳收敛性。几个数值示例表明,光谱扩展有限元方法使$ p $ fifinement的优势成为可能。在这些示例中,四阶光谱扩展有限元元素在频率计算中提供$ \ MATHCAL {O}(10^{ - 8})$,与二次有限元相比,频率计算的精度少于三十倍以上。
In this paper, we compute the band structure of one- and two-dimensional phononic composites using the extended finite element method (X-FEM) on structured higher-order (spectral) finite element meshes. On using partition-of-unity enrichment in finite element analysis, the X-FEM permits use of structured finite element meshes that do not conform to the geometry of holes and inclusions. This eliminates the need for remeshing in phononic shape optimization and topology optimization studies. In two dimensions, we adopt rational B{é}zier representation of curved (circular) geometries, and construct suitable material enrichment functions to model two-phase composites. A Bloch-formulation of the elastodynamic phononic eigenproblem is adopted. Efficient computation of weak form integrals with polynomial integrands is realized via the homogeneous numerical integration scheme -- a method that uses Euler's homogeneous function theorem and Stokes's theorem to reduce integration to the boundary of the domain. Ghost penalty stabilization is used on finite elements that are cut by a hole. Band structure calculations on perforated (circular holes, elliptical holes, and holes defined as a level set) materials as well as on two-phase phononic crystals are presented that affirm the sound accuracy and optimal convergence of the method on structured, higher-order spectral finite element meshes. Several numerical examples demonstrate the advantages of $p$-refinement made possible by the spectral extended finite element method. In these examples, fourth-order spectral extended finite elements deliver $\mathcal{O}(10^{-8})$ accuracy in frequency calculations with more than thirty-fold fewer degrees-of-freedom when compared to quadratic finite elements.