论文标题

完整换位图的极端偶数无周期的子图

Extremal even-cycle-free subgraphs of the complete transposition graphs

论文作者

Cao, Mengyu, Lv, Benjian, Wang, Kaishun, Zhou, Sanming

论文摘要

给定图表$ g $和$ h $,广义的Turán数字$ {\ rm ex}(g,h)$是$ h $ free子图中的最大边数。在本文中,对于任何$ n \ ge 3 $和$ n \ ge 3 $和$ c_ {2l} $,我们获得$ {\ rm ex}(ct_n,ct_n,ct_n,ct_n,ct_n,c_ {2l})$,其中$ c_ {2l} $是长度$ 2L $和$ ct_n $的循环,$ 2l $和$ ct_n $是完整的Tragptey thecy the cayley图形{ s} _n $相对于$ {\ rm s} _n $的所有换位集。

Given graphs $G$ and $H$, the generalized Turán number ${\rm ex}(G,H)$ is the maximum number of edges in an $H$-free subgraph of $G$. In this paper, we obtain an asymptotic upper bound on ${\rm ex}(CT_n,C_{2l})$ for any $n \ge 3$ and $l\geq2$, where $C_{2l}$ is the cycle of length $2l$ and $CT_n$ is the complete transposition graph which is defined as the Cayley graph on the symmetric group ${\rm S}_n$ with respect to the set of all transpositions of ${\rm S}_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源