论文标题
关于符号差异的伴随作用
On the adjoint action of the group of symplectic diffeomorphisms
论文作者
论文摘要
我们研究紧凑型象征性歧管($ x,ω$)对$ c^\ infty(x)$和函数$ c^\ infty(x)\ to \ mathbb r $的动作。我们描述了$ c^\ infty(x)$上不变凸功能的各种属性。除其他方面,我们表明,连续的凸功能$ c^\ infty(x)\ to \ mathbb r $在该动作下是不变的,在所谓的严格重排下会自动不变,并且它们在$ c^\ infty(x)$的SUP Norm topology中是连续的;但这通常是不正确的,如果降低了凸状条件。
We study the action of Hamiltonian diffeomorphisms of a compact symplectic manifold ($X,ω$) on $C^\infty(X)$ and on functions $C^\infty(X)\to \mathbb R$. We describe various properties of invariant convex functions on $C^\infty(X)$. Among other things we show that continuous convex functions $C^\infty(X)\to \mathbb R$ that are invariant under the action are automatically invariant under so called strict rearrangements and they are continuous in the sup norm topology of $C^\infty(X)$; but this is not generally true if the convexity condition is dropped.