论文标题
模拟壳型超新星残留物的TEV伽马射线形态
Simulating TeV gamma-ray morphologies of shell-type supernova remnants
论文作者
论文摘要
如果局部磁场方向与休克正常平行,那么超新星残余(SNR)冲击可提供宇宙射线(CR)质子加速度的有利位点。 Using the moving-mesh magneto-hydrodynamical (MHD) code AREPO we present a suite of SNR simulations with CR acceleration in the Sedov-Taylor phase that combine different magnetic field topologies, density distributions with gradients and large-scale fluctuations, and -- for our core-collapse SNRs -- a multi-phase interstellar medium with dense clumps with a contrast of $10^4$.假设TEV伽马射线发射的HADRONIC GAMMA-ray发射模型,我们发现$Δρ/ρ_0\ GTRSIM75 $%的大幅度密度波动需要强烈调节Accelerage Optipity Accelere Ompalique的稻草模型中的γ-射线增强性。但是,这会导致伽马射线观测结果排除的冲击表面的强波纹。相比之下,磁性倾斜依赖性加速度可以轻松解释从SN1006(带有均匀磁场)到Vela Junior和RX J1713(带有湍流场)的伽马射线形态的观察到的方差,该方差来自单个模型,这些模型来自等离子粒子粒子中的模拟。我们对SN1006的最佳拟合模型的大规模密度梯度为$ \ nabla {n} \ simeq 0.0034〜 \ Mathrm {cm}^{ - 3}〜\ Mathrm {pc}^{PC}^{ - 1} $从西南到东北到东北到众所周知,$ nick $ nive $ nive $ $ nsky是$。我们针对Vela Junior和RX J1713的最佳合适模型采用了湍流磁场和密集的团块的组合,以解释其TEV Gamma-ray形态和中等的冲击波纹。
Supernova remnant (SNR) shocks provide favourable sites of cosmic ray (CR) proton acceleration if the local magnetic field direction is quasi-parallel to the shock normal. Using the moving-mesh magneto-hydrodynamical (MHD) code AREPO we present a suite of SNR simulations with CR acceleration in the Sedov-Taylor phase that combine different magnetic field topologies, density distributions with gradients and large-scale fluctuations, and -- for our core-collapse SNRs -- a multi-phase interstellar medium with dense clumps with a contrast of $10^4$. Assuming the hadronic gamma-ray emission model for the TeV gamma-ray emission, we find that large-amplitude density fluctuations of $δρ/ρ_0\gtrsim75$ per cent are required to strongly modulate the gamma-ray emissivity in a straw man's model in which the acceleration efficiency is independent of magnetic obliquity. However, this causes strong corrugations of the shock surface that are ruled out by gamma-ray observations. By contrast, magnetic obliquity-dependent acceleration can easily explain the observed variance in gamma-ray morphologies ranging from SN1006 (with a homogeneous magnetic field) to Vela Junior and RX J1713 (with a turbulent field) in a single model that derives from plasma particle-in-cell simulations. Our best-fit model for SN1006 has a large-scale density gradient of $ \nabla{n}\simeq 0.0034~\mathrm{cm}^{-3}~\mathrm{pc}^{-1} $ pointing from south-west to north-east and a magnetic inclination with the plane of the sky of $\lesssim10^\circ$. Our best-fit model for Vela Junior and RX J1713 adopts a combination of turbulent magnetic field and dense clumps to explain their TeV gamma-ray morphologies and moderate shock corrugations.