论文标题

与小组监督学习的零射合合成

Zero-shot Synthesis with Group-Supervised Learning

论文作者

Ge, Yunhao, Abu-El-Haija, Sami, Xin, Gan, Itti, Laurent

论文摘要

对灵长类动物的视觉认知优于人造神经网络,它可以“设想”视觉对象,即使是新引入的对象,甚至在不同的属性中,包括姿势,位置,颜色,颜色,纹理等的不同属性,以帮助神经网络具有不同属性的对象,我们提出了一组客观的功能,是新的学习范围的群体,该范围是一个新颖的学习群体,该群体是一个术语,我们的研究尤其是一组,我们的研究尤其是我们的群体。 GSL允许我们将输入分解为具有可交换组件的分离的表示,可以重新组合以合成新样本。例如,可以分解红色船和蓝色汽车的图像,并重新组合以合成红色汽车的新图像。我们提出了一种基于自动编码器的实施,称为群体监督的零照片合成网络(GZS-NET)接受了我们的学习框架的培训,即使在培训过程中没有见证过这样的示例,也可以产生高质量的红色汽车。除了开源的数据集外,我们还测试了现有基准测试的模型和学习框架。我们在定性和定量上证明了接受GSL训练的GZS-NET优于最先进的方法。

Visual cognition of primates is superior to that of artificial neural networks in its ability to 'envision' a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. For instance, images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to anew dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源