论文标题

差异私有位置轨迹的公用事业优化合成

Utility-Optimized Synthesis of Differentially Private Location Traces

论文作者

Gursoy, Mehmet Emre, Rajasekar, Vivekanand, Liu, Ling

论文摘要

差异化位置跟踪综合(DPLT)最近已成为保护移动用户隐私的解决方案,同时启用其位置痕迹的分析和共享。 DPLT中的一个主要挑战是最好地保留位置跟踪数据集中的实用程序,考虑到数据集的高维,复杂性和异质性以及实用程序的各种类型和概念,这是非平凡的。在本文中,我们介绍Optatrace:DPLT的实用性优化和针对性的方法。鉴于真实的跟踪数据集D,差异隐私参数Epsilon控制着隐私保护的强度以及效用/错误度量误差; OptAtrace使用贝叶斯优化来优化DPLT,以便在满足Epsilon-Differential隐私时最小化输出误差(以给定的度量ERR来衡量)。此外,OptAtrace推出了一个实用程序模块,该模块包含几个用于实用程序基准和选择ERR的内置错误指标,以及用于可访问和交互式DPLTS服务的前端Web界面。实验表明,与先前的工作相比,Optatrace的优化输出可以产生大量的实用性改进和误差。

Differentially private location trace synthesis (DPLTS) has recently emerged as a solution to protect mobile users' privacy while enabling the analysis and sharing of their location traces. A key challenge in DPLTS is to best preserve the utility in location trace datasets, which is non-trivial considering the high dimensionality, complexity and heterogeneity of datasets, as well as the diverse types and notions of utility. In this paper, we present OptaTrace: a utility-optimized and targeted approach to DPLTS. Given a real trace dataset D, the differential privacy parameter epsilon controlling the strength of privacy protection, and the utility/error metric Err of interest; OptaTrace uses Bayesian optimization to optimize DPLTS such that the output error (measured in terms of given metric Err) is minimized while epsilon-differential privacy is satisfied. In addition, OptaTrace introduces a utility module that contains several built-in error metrics for utility benchmarking and for choosing Err, as well as a front-end web interface for accessible and interactive DPLTS service. Experiments show that OptaTrace's optimized output can yield substantial utility improvement and error reduction compared to previous work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源