论文标题

中间质量星周周围谷物耗尽的原始磁盘的光蒸发:调查富含气体的碎屑磁盘作为原电力残留物的可能性

Photoevaporation of Grain-Depleted Protoplanetary Disks around Intermediate-Mass Stars: Investigating Possibility of Gas-Rich Debris Disks as Protoplanetary Remnants

论文作者

Nakatani, Riouhei, Kobayashi, Hiroshi, Kuiper, Rolf, Nomura, Hideko, Aikawa, Yuri

论文摘要

碎屑盘通常被认为是无气体系统,但是最近的(亚)毫米观察结果已检测到数十个具有丰富气体含量的人。气体成分的起源尚不清楚;也就是说,它可以是源自大物体的原月球残余物和/或二级产品。为了成为原始球星,父母原行星磁盘的气体成分需要为$ \ gtrsim10 {\,\ rm myr} $生存。但是,以前的模型可以预测$ \ lyssim 10 {\,\ rm myr} $ lifetimes,因为在磁盘演化的后期有效光蒸发。在本研究中,我们研究了在磁盘演化的后期,气体富含气体富含气体的光蒸发。进化的系统被建模为那些足够强的辐射力以连续吹出小谷物的系统($ \ syssim 4 {\,\rmμm} $),这是通过Stellar Far-Far-Eltraviolet(Fuv)诱导的光电加热来驱动光蒸发的必不可少的组成部分。我们发现谷物耗竭会减少光电加热,因此FUV光蒸发并不激发。 Extrem-ultraviolet(EUV)光蒸发是主导的,产生$ 2 $ - $ 5 \ $ 5 \ times10^{ - 10}(φ_ {\ rm euv}/10^{41} {41} {\,\,\,\,\ rm s}} yr}^{ - 1} $,其中$φ_ {\ rm euv} $是EUV排放率。气体组件的估计寿命为$ \ sim 50(m _ {\ rm disk}/10^{ - 2} \,m_ \ odot)(φ_ {\ rm euv}/10^{41} {41} {41} \,,{\ rm s}}在系统中,小谷物的``初始''磁盘质量在系统中耗尽。通过订单估计,我们表明,与低质量恒星相比,气体成分可以在A型恒星周围生存更长的时间。这种趋势与A型恒星周围富含气体的碎屑盘的频率较高,这意味着气体成分是原行星残留物的可能性。

Debris disks are classically considered to be gas-less systems, but recent (sub)millimeter observations have detected tens of those with rich gas content. The origin of the gas component remains unclear; namely, it can be protoplanetary remnants and/or secondary products deriving from large bodies. In order to be protoplanetary in origin, the gas component of the parental protoplanetary disk is required to survive for $\gtrsim10{\,\rm Myr}$. However, previous models predict $\lesssim 10{\,\rm Myr}$ lifetimes because of efficient photoevaporation at the late stage of disk evolution. In the present study, we investigate photoevaporation of gas-rich, optically-thin disks around intermediate-mass stars at a late stage of the disk evolution. The evolved system is modeled as those where radiation force is sufficiently strong to continuously blow out small grains ($\lesssim 4 {\,\rm μm}$), which are an essential component for driving photoevaporation via photoelectric heating induced by stellar far-ultraviolet (FUV). We find that the grain depletion reduces photoelectric heating, so that FUV photoevaporation is not excited. Extreme-ultraviolet (EUV) photoevaporation is dominant and yields a mass-loss rate of $2$--$5\times10^{-10}(Φ_{\rm EUV}/10^{41}{\,\rm s}^{-1})^{1/2}\,M_\odot\,{\rm yr}^{-1}$, where $Φ_{\rm EUV}$ is the EUV emission rate. The estimated lifetimes of the gas component are $\sim 50 (M_{\rm disk}/10^{-2}\,M_\odot)(Φ_{\rm EUV}/10^{41}\,{\rm s}^{-1})^{1/2}\,{\rm Myr}$ and depend on the ``initial'' disk mass at the point small grains have been depleted in the system. With an order estimation, we show that the gas component can survive for a much longer time around A-type stars than lower-mass stars. This trend is consistent with the higher frequency of gas-rich debris disks around A-type stars, implying the possibility of the gas component being protoplanetary remnants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源