论文标题

连续词典符合低级张量近似值

Continuous dictionaries meet low-rank tensor approximations

论文作者

Elvira, Clement, Cohen, Jeremy E., Herzet, Cedric, Gribonval, Remi

论文摘要

在这篇简短的论文中,我们桥接了两个看似无关的稀疏近似主题:连续的稀疏编码和低级近似值。我们表明,对于连续词典的特定选择,具有核电 - 正则化的线性系统具有与Blasso问题相同的解决方案。尽管在矩阵案例中已经部分理解了这一事实,但我们进一步表明,对于张量数据,使用blasso求解器进行低级别近似问题导致了优化方法的新分支,但尚未探索。特别是,在自动张量排名的选择问题上展示了拟议的Frank-Wolfe算法。

In this short paper we bridge two seemingly unrelated sparse approximation topics: continuous sparse coding and low-rank approximations. We show that for a specific choice of continuous dictionary, linear systems with nuclear-norm regularization have the same solutions as a BLasso problem. Although this fact was already partially understood in the matrix case, we further show that for tensor data, using BLasso solvers for the low-rank approximation problem leads to a new branch of optimization methods yet vastly unexplored. In particular, the proposed Frank-Wolfe algorithm is showcased on an automatic tensor rank selection problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源