论文标题
Prandtl层理论的有效性,用于稳定的磁性水力动力学,在移动板上,不伸出外部理想MHD流量
Validity of Prandtl layer theory for steady magnetohydrodynamics over a moving plate with nonshear outer ideal MHD flows
论文作者
论文摘要
在本文中,我们验证了边界层理论的2D稳定粘性不可压缩的磁性水力动力学(MHD)方程,该方程在[0,l] \ times \ times \ times \ times \ times \ times \ times \ times \ times \ mathbb {r} _+\} $的假设下以$ \ \ \ {y = 0 \}的假设为$ \} $。边界层扩展和收敛速率的有效性是在Sobolev的意义上建立的。我们将剪切外理想MHD流[3]的案例扩展到非刺激流。
In this paper, we validate the boundary layer theory for 2D steady viscous incompressible magnetohydrodynamics (MHD) equations in a domain $\{(X, Y)\in[0, L]\times\mathbb{R}_+\}$ under the assumption of a moving boundary at $\{Y=0\}$. The validity of the boundary layer expansion and the convergence rates are established in Sobolev sense. We extend the results for the case with the shear outer ideal MHD flows [3] to the case of the nonshear flows.