论文标题
贝叶斯对随机系列融合的评估与气候变化的应用
Bayesian Appraisal of Random Series Convergence with Application to Climate Change
论文作者
论文摘要
Roy和Bhattacharya(2020年)提供了无限系列的贝叶斯表征,以及它们最重要的应用,即对(以著名的Riemann假设为特征的Dirichlet系列),揭示了没有支持150多年来最著名的猜想的见解。 与Roy和Bhattacharya(2020)考虑的确定性系列相反,在本文中,我们进行了随机的无限序列进行研究。值得注意的是,我们的方法不需要任何简化的假设。尽管随机序列的贝叶斯特征理论与确定性设置,有效的部分金额的有效上限(实施所需的有效上限)并没有什么不同,但事实证明是随机设置中的一项具有挑战性的事业。在本文中,我们为随机无限序列的部分总和构建了参数和非参数上限形式,并与前者相比演示了后者的一般性。模拟研究表现出在我们考虑的所有设置中,非参数结合的高精度和效率。 最后,在串联收敛的情况下,利用汇总趋于零的属性,我们考虑将非参数结合驱动的贝叶斯方法应用于全球气候变化分析。具体而言,分析1850--2016年全球平均温度记录和全球全球平均温度重建数据在目前12,000年之前,我们得出结论,尽管当前的全球变暖情况,我们得出结论,全球气候动态仅在临时变化中,目前的全球变暖是一种实例,并且在过去或不太可能的情况下,全球变暖是一种暂时的变化,并且在过去的情况下,较不努力。
Roy and Bhattacharya (2020) provided Bayesian characterization of infinite series, and their most important application, namely, to the Dirichlet series characterizing the (in)famous Riemann Hypothesis, revealed insights that are not in support of the most celebrated conjecture for over 150 years. In contrast with deterministic series considered by Roy and Bhattacharya (2020), in this article we take up random infinite series for our investigation. Remarkably, our method does not require any simplifying assumption. Albeit the Bayesian characterization theory for random series is no different from that for the deterministic setup, construction of effective upper bounds for partial sums, required for implementation, turns out to be a challenging undertaking in the random setup. In this article, we construct parametric and nonparametric upper bound forms for the partial sums of random infinite series and demonstrate the generality of the latter in comparison to the former. Simulation studies exhibit high accuracy and efficiency of the nonparametric bound in all the setups that we consider. Finally, exploiting the property that the summands tend to zero in the case of series convergence, we consider application of our nonparametric bound driven Bayesian method to global climate change analysis. Specifically, analyzing the global average temperature record over the years 1850--2016 and Holocene global average temperature reconstruction data 12,000 years before present, we conclude, in spite of the current global warming situation, that global climate dynamics is subject to temporary variability only, the current global warming being an instance, and long term global warming or cooling either in the past or in the future, are highly unlikely.