论文标题

从LiDar Point云中表面的语义分割

Semantic Segmentation of Surface from Lidar Point Cloud

论文作者

Mukherjee, Aritra, Das, Sourya Dipta, Ghosh, Jasorsi, Chowdhury, Ananda S., Saha, Sanjoy Kumar

论文摘要

在机器人导航的SLAM(同时本地化和映射)领域中,映射环境是一项重要的任务。在这方面,LIDAR传感器可以实时以点云的形式生成几乎准确的环境3D图。尽管数据足以提取与SLAM相关的信息,但是在点云中处理数百万点在计算上非常昂贵。提出的方法提出了一种快速算法,可用于实时从云中提取云语义标记的表面段,以供直接导航使用或更高级别的上下文场景重建。首先,使用旋转激光雷达的单个扫描用于在线生成一个亚采样云点的网格。基于估计表面段的基础,生成的网格进一步用于表面正常计算。提出并利用一个新的表示表面段的描述符来确定片段(语义标签)的表面类别。这些语义表面段可以进一步用于场景中对象的几何重建,也可以用于由机器人进行优化的轨迹计划。将所提出的方法与点云分割方法和最先进的语义分割方法的数量进行比较,以强调其在速度和准确性方面。

In the field of SLAM (Simultaneous Localization And Mapping) for robot navigation, mapping the environment is an important task. In this regard the Lidar sensor can produce near accurate 3D map of the environment in the format of point cloud, in real time. Though the data is adequate for extracting information related to SLAM, processing millions of points in the point cloud is computationally quite expensive. The methodology presented proposes a fast algorithm that can be used to extract semantically labelled surface segments from the cloud, in real time, for direct navigational use or higher level contextual scene reconstruction. First, a single scan from a spinning Lidar is used to generate a mesh of subsampled cloud points online. The generated mesh is further used for surface normal computation of those points on the basis of which surface segments are estimated. A novel descriptor to represent the surface segments is proposed and utilized to determine the surface class of the segments (semantic label) with the help of classifier. These semantic surface segments can be further utilized for geometric reconstruction of objects in the scene, or can be used for optimized trajectory planning by a robot. The proposed methodology is compared with number of point cloud segmentation methods and state of the art semantic segmentation methods to emphasize its efficacy in terms of speed and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源