论文标题
$ {\ rm sl} _d(\ mathbb {r})的紧凑型商的量子真实性/{\ rm so}(d)$
Quantum Ergodicity for compact quotients of ${\rm SL}_d(\mathbb{R})/{\rm SO}(d)$ in the Benjamini-Schramm limit
论文作者
论文摘要
我们研究了$ {\ rm sl} _d(\ Mathbb {r})/{\ rm so}(d)$,$ d \ ge 3 $的$ {\ rm sl} _d(\ mathbb {rm})的紧凑型商的Benjamini-Schramm收敛序列的限制行为,其频谱参数停留在固定窗口中。我们在此级别上证明了一种量子性形式的形式,该形式将Le Masson和Sahlsten的结果扩展到了更高的等级情况。
We study the limiting behavior of Maass forms on Benjamini-Schramm convergent sequences of compact quotients of ${\rm SL}_d(\mathbb{R})/{\rm SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of Quantum Ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.