论文标题
可允许的矢量和ra nikodym定理
Admissible vectors and Radon-Nikodym theorems
论文作者
论文摘要
可接受的矢量通过平方集成表示,导致群体的框架或连贯的状态。这项工作表明,可接受的向量可以看作是(左)组冯·诺伊曼代数(左)支撑的重量。该分析涉及空间和合子衍生物,非交换性$ l^p $ -Fourier变换和radon-Nikodym定理。正方形的集成性将权重限制在代数的预期中,并且所有内容都可以用(正确的自我限制元素来写成。
Admissible vectors lead to frames or coherent states under the action of a group by means of square integrable representations. This work shows that admissible vectors can be seen as weights with central support on the (left) group von Neumann algebra. The analysis involves spatial and cocycle derivatives, noncommutative $L^p$-Fourier transforms and Radon-Nikodym theorems. Square integrability confine the weights in the predual of the algebra and everything may be written in terms of a (right selfdual) bounded element.