论文标题

通过贝叶斯推断从稀疏数据中跟踪疾病暴发

Tracking disease outbreaks from sparse data with Bayesian inference

论文作者

Wilder, Bryan, Mina, Michael J., Tambe, Milind

论文摘要

COVID-19大流行为流行病学中的经典问题提供了新的动机:估计案例计数中暴发期间的经验传播率(正式,随时间变化的繁殖数)。尽管存在标准方法,但它们在粗粒的国家或州量表中使用丰富的数据效果最好,并努力适应较细节(例如,个别学校或城镇)的部分观察性和稀疏数据。例如,当仅一小部分感染被测试程序捕获时,案例计数可能很少。或者,受感染的个体测试阳性是否可能取决于测试的类型和测试的时间点。我们提出了一个贝叶斯框架,该框架以原则上的方式适应部分可观察性。我们的模型在每个时间步骤的未知繁殖数量上都将高斯流程放置,并根据特定测试程序的分布采样模型观测值。例如,我们的框架可以容纳各种测试(病毒RNA,抗体,抗原等)和采样方案(例如纵向或横截面筛选)。由于存在数十或数十万个离散的潜在变量,该框架中的推论变得复杂。为了应对这一挑战,我们提出了一种有效的随机变异推理方法,该方法依赖于新型梯度估计器的变分目标。由Covid-19激励的示例的实验结果表明,我们的方法会产生准确且校准的后验,而估计繁殖数的标准方法可能会严重失败。

The COVID-19 pandemic provides new motivation for a classic problem in epidemiology: estimating the empirical rate of transmission during an outbreak (formally, the time-varying reproduction number) from case counts. While standard methods exist, they work best at coarse-grained national or state scales with abundant data, and struggle to accommodate the partial observability and sparse data common at finer scales (e.g., individual schools or towns). For example, case counts may be sparse when only a small fraction of infections are caught by a testing program. Or, whether an infected individual tests positive may depend on the kind of test and the point in time when they are tested. We propose a Bayesian framework which accommodates partial observability in a principled manner. Our model places a Gaussian process prior over the unknown reproduction number at each time step and models observations sampled from the distribution of a specific testing program. For example, our framework can accommodate a variety of kinds of tests (viral RNA, antibody, antigen, etc.) and sampling schemes (e.g., longitudinal or cross-sectional screening). Inference in this framework is complicated by the presence of tens or hundreds of thousands of discrete latent variables. To address this challenge, we propose an efficient stochastic variational inference method which relies on a novel gradient estimator for the variational objective. Experimental results for an example motivated by COVID-19 show that our method produces an accurate and well-calibrated posterior, while standard methods for estimating the reproduction number can fail badly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源