论文标题
石墨烯异质结构中表面等离子体极化子的时空调节不稳定性
Spatio-temporal Modulation Instability of Surface Plasmon Polaritons in Graphene-dielectric Heterostructure
论文作者
论文摘要
使用Jacobi椭圆函数,为石墨烯 - 二电波导中的表面等离子体极性子(SPP)的非线性振幅方程开发了一种分析溶液。结果表明,如果非线性增加,则可以增强SPP的场定位,并与TM极化的Terahertz光相结合。在侧面,基于拆分式梁传播方法(SSBPM)的数值解决方案表明,空间调制稳定性(MI)可以主导。因此,较大的非线性导致产生离散的等离子孤子,而不是为适度的非线性产生的衍射曲线。然后将时间变化添加到非线性振幅方程并通过预测式 - 扭转法方法来求解,因此揭示了时间mi作为具有多周期行为的超短脉冲序列。唤起与激光腔的相似性,可以将波导视为跨间隔系统,以实现大型非线性制度,如果耦合深度升高,MI的特征将从对流变为绝对,SPP的幅度将快速生长。该程序甚至可能是混乱且无法预测的。该跨度系统适用于电流电路的应用,光学放大,光学通信和生物医学感应,低功耗和非破坏性是重要的特征。
Using the Jacobi Elliptic Functions, an analytical solution is developed for the nonlinear amplitude equation of Surface Plasmon Polaritons (SPPs) in a graphene-dielectric waveguide. It is shown that the field localization of SPPs coupled with TM polarized terahertz light can be enhanced if the nonlinearity is increased. On the side, a numerical solution based on Split Step Beam Propagation Method (SSBPM) suggests that spatial Modulation Instabilty (MI) can be dominant. Accordingly, larger nonlinearity leads to the generation of discrete plasmon solitons rather than the diffracted profile resulted for the modest nonlinearity. Adding then the temporal variations to the nonlinear amplitude equation and solving numerically by predictor-corrector method, it is revealed that temporal MI appears as ultrashort pulse trains with multi-periodic behavior. Evoking the similarity with a laser cavity, the waveguide can be assumed as a spasing system-assuming the large nonlinearity regime-in which if the coupling depth is raised, the character of MI will be changed from the convective to absolute and the amplitude of SPPs will grow fast. The procedure can be even chaotic and unpredictable. This spasing system is suitable for applications of the electro-optical circuitry, optical amplification, optical communication and biomedical sensing through which the low power consumption and non-destructivity are of important traits.