论文标题

分布式的卡尔曼估计与当地过滤器脱钩

Distributed Kalman Estimation with Decoupled Local Filters

论文作者

Marelli, Damián, Sui, Tianju, Fu, Minyue

论文摘要

我们研究了分布式的卡尔曼过滤问题,其中许多节点在没有中央协调的情况下进行了配合,无法根据局部测量和从邻居收到的数据估算一个共同的状态。这通常是通过使用通过某些过程融合整个网络融合数据的信息在每个节点上运行本地过滤器来完成的。现有方法的一个常见问题是,每个时间步骤的本地过滤器的结果取决于上一步中融合的数据。我们提出了一种消除此错误传播的替代方法。在某些全球结构数据上,在某些温和条件下,确保拟议的局部过滤器稳定,它们的融合得出了集中的卡尔曼估计。新方法的主要特征是,在给定时间步骤中引入的融合错误并未延续到后续步骤。这在许多情况下都提供了优势,包括仅以速度慢的速率进行全球估算的时间,而不是测量速度或网络中断时。如果可以渐近地正确融合全局结构数据,则局部过滤器的稳定性等效于集中式卡尔曼滤波器的稳定性。否则,我们提供的条件可以保证稳定性并绑定结果估计误差。进行数值实验以显示我们方法比其他现有替代方案的优势。

We study a distributed Kalman filtering problem in which a number of nodes cooperate without central coordination to estimate a common state based on local measurements and data received from neighbors. This is typically done by running a local filter at each node using information obtained through some procedure for fusing data across the network. A common problem with existing methods is that the outcome of local filters at each time step depends on the data fused at the previous step. We propose an alternative approach to eliminate this error propagation. The proposed local filters are guaranteed to be stable under some mild conditions on certain global structural data, and their fusion yields the centralized Kalman estimate. The main feature of the new approach is that fusion errors introduced at a given time step do not carry over to subsequent steps. This offers advantages in many situations including when a global estimate in only needed at a rate slower than that of measurements or when there are network interruptions. If the global structural data can be fused correctly asymptotically, the stability of local filters is equivalent to that of the centralized Kalman filter. Otherwise, we provide conditions to guarantee stability and bound the resulting estimation error. Numerical experiments are given to show the advantage of our method over other existing alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源