论文标题

重新访问基于视觉的击键推理攻击的威胁空间

Revisiting the Threat Space for Vision-based Keystroke Inference Attacks

论文作者

Lim, John, Price, True, Monrose, Fabian, Frahm, Jan-Michael

论文摘要

基于视觉的击键推理攻击是侧通道攻击,其中攻击者使用光学设备在其移动设备上记录用户并推断其击键。过去已经研究了这些攻击的威胁空间,但我们认为,这种威胁空间的定义特征,即攻击者的力量,已经过时了。以前的作品不研究接受过深层神经网络训练的视觉系统的对手,因为这些模型需要大量的培训数据并策划此类数据集很昂贵。为了解决这个问题,我们创建了一个大规模合成数据集,以模拟攻击方案,以进行击键推理攻击。我们表明,首次对合成数据进行预训练,然后在现实生活中采用转移学习技术,提高我们深度学习模型的性能。这表明这些模型能够从我们的综合数据中学习丰富,有意义的表示,并且对合成数据的培训可以帮助克服拥有基于视觉的关键中风推理攻击的小型现实生活数据集的问题。对于这项工作,我们专注于单键分类,其中输入是按键的框架,并且输出是预测的密钥。在对我们的合成数据进行预训练后,我们能够获得95.6%的精度,并在对抗域自适应框架中对一组现实生活数据进行培训。模拟器的源代码:https://github.com/jlim13/keystroke-inferey-inferect-synthetic-dataset-generator-

A vision-based keystroke inference attack is a side-channel attack in which an attacker uses an optical device to record users on their mobile devices and infer their keystrokes. The threat space for these attacks has been studied in the past, but we argue that the defining characteristics for this threat space, namely the strength of the attacker, are outdated. Previous works do not study adversaries with vision systems that have been trained with deep neural networks because these models require large amounts of training data and curating such a dataset is expensive. To address this, we create a large-scale synthetic dataset to simulate the attack scenario for a keystroke inference attack. We show that first pre-training on synthetic data, followed by adopting transfer learning techniques on real-life data, increases the performance of our deep learning models. This indicates that these models are able to learn rich, meaningful representations from our synthetic data and that training on the synthetic data can help overcome the issue of having small, real-life datasets for vision-based key stroke inference attacks. For this work, we focus on single keypress classification where the input is a frame of a keypress and the output is a predicted key. We are able to get an accuracy of 95.6% after pre-training a CNN on our synthetic data and training on a small set of real-life data in an adversarial domain adaptation framework. Source Code for Simulator: https://github.com/jlim13/keystroke-inference-attack-synthetic-dataset-generator-

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源