论文标题

精确农业中农作物/杂草分割的多光谱图像合成

Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision Farming

论文作者

Fawakherji, Mulham, Potena, Ciro, Pretto, Alberto, Bloisi, Domenico D., Nardi, Daniele

论文摘要

有效的感知系统是耕作机器人的基本组成部分,因为它使他们能够正确地感知周围环境并进行有针对性的操作。最新的方法利用了最先进的机器学习技术来学习目标任务的有效模型。但是,这些技术需要大量的标记数据进行培训。解决此问题的最新方法是通过生成对抗网络(GAN)进行数据扩展,在该网络中,整个合成场景都添加到培训数据中,从而扩大和多样化其信息内容。在这项工作中,我们提出了关于通用数据增强方法的替代解决方案,将其应用于精确农业中农作物/杂草分割的基本问题。从真实的图像开始,我们通过替换最相关的对象类(即作物和杂草)及其合成的对应物来创建半人工样本。为此,我们采用有条件的GAN(CGAN),其中生成模型是通过调节生成对象的形状来训练的。此外,除了RGB数据外,我们还考虑了近红外(NIR)信息,生成四个通道多光谱合成图像。在三个公开数据集上进行的定量实验表明,(i)我们的模型能够生成植物的真实多光谱图像,以及(ii)在训练过程中使用此类合成图像可以提高先进的语义分段卷积网络的细分性能。

An effective perception system is a fundamental component for farming robots, as it enables them to properly perceive the surrounding environment and to carry out targeted operations. The most recent methods make use of state-of-the-art machine learning techniques to learn a valid model for the target task. However, those techniques need a large amount of labeled data for training. A recent approach to deal with this issue is data augmentation through Generative Adversarial Networks (GANs), where entire synthetic scenes are added to the training data, thus enlarging and diversifying their informative content. In this work, we propose an alternative solution with respect to the common data augmentation methods, applying it to the fundamental problem of crop/weed segmentation in precision farming. Starting from real images, we create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts. To do that, we employ a conditional GAN (cGAN), where the generative model is trained by conditioning the shape of the generated object. Moreover, in addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images. Quantitative experiments, carried out on three publicly available datasets, show that (i) our model is capable of generating realistic multi-spectral images of plants and (ii) the usage of such synthetic images in the training process improves the segmentation performance of state-of-the-art semantic segmentation convolutional networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源