论文标题
迈向文化常识的地图集
Towards an Atlas of Cultural Commonsense for Machine Reasoning
论文作者
论文摘要
AI和NLP任务的现有常识性推理数据集无法解决人类生活的重要方面:文化差异。我们介绍了一种方法,该方法通过纳入可归因于文化或民族群体的知识差异来扩展有关众包认识知识的先前工作。我们通过收集常识性知识来证明这一技术,这些知识围绕六个相当普遍的仪式 - 出生,成年,婚姻,婚姻,葬礼,新年和生日 - 在两个民族群体中:美国和印度。我们的研究扩大了常见事件的常识性推理领域中现有工作确定的不同类型的关系,并使用这些新类型来收集区分提供知识的群体身份的信息。它还使我们迈出了一步,它迈向了一台不假定普遍(且可能是西方偏见)常识知识的机器,而是具有在上下文和文化敏感的方式中推理的能力。我们的希望是,这种对这类文化知识将导致在NLP任务(例如回答(QA)以及文本理解和世代)中具有更类似人类的表现。
Existing commonsense reasoning datasets for AI and NLP tasks fail to address an important aspect of human life: cultural differences. We introduce an approach that extends prior work on crowdsourcing commonsense knowledge by incorporating differences in knowledge that are attributable to cultural or national groups. We demonstrate the technique by collecting commonsense knowledge that surrounds six fairly universal rituals -- birth, coming-of-age, marriage, funerals, new year, and birthdays -- across two national groups: the United States and India. Our study expands the different types of relationships identified by existing work in the field of commonsense reasoning for commonplace events, and uses these new types to gather information that distinguish the identity of the groups providing the knowledge. It also moves us a step closer towards building a machine that doesn't assume a rigid framework of universal (and likely Western-biased) commonsense knowledge, but rather has the ability to reason in a contextually and culturally sensitive way. Our hope is that cultural knowledge of this sort will lead to more human-like performance in NLP tasks such as question answering (QA) and text understanding and generation.