论文标题
在分支封面下举起弧形图:一个反问题及其解决方案
Lifting Arc Diagrams Under Branched Covers: An Inverse Problem and its Solution
论文作者
论文摘要
一个覆盖表面的分支覆盖地图可诱导其弧复合物之间相反方向的图。我们使用所谓的提升图片代表一个分支覆盖地图,并使用此表示形式在给定表面上计算地解决一组加权弧图的成员问题,可以通过在Bimon上抬起加权弧图来获得。我们在一般情况下提供了蛮力解决方案,当输入弧图为三角测量时,我们提供了有效的解决方案。
A branched covering map of surfaces induces a map in the opposite direction between their arc complexes. We represent a branched covering map combinatorially using what we call a lifting picture, and use this representation to computably solve the membership problem of the set of weighted arc diagrams on a given surface which can be obtained by lifting a weighted arc diagram on a bigon. We provide a brute force solution in the general case, and an efficient solution when the input arc diagram is a triangulation.