论文标题

具有语言嵌入的GSCAN的系统概括

Systematic Generalization on gSCAN with Language Conditioned Embedding

论文作者

Gao, Tong, Huang, Qi, Mooney, Raymond J.

论文摘要

系统的概括是指学习算法的能力,可以推断出学习的行为而不是看到与其训练数据相似的情况。如最近的工作所示,即使在测试集与培训数据系统上不同的任务上,最新的深度学习模型即使在设计的任务上都显着失败。我们假设,在学习其表示形式的同时,明确地对对象之间的关系进行了明确的建模将有助于实现系统的概括。因此,我们提出了一种新颖的方法,该方法以动态消息传递的方式来学习对象的上下文化嵌入,并以输入自然语言为条件,并可以通过其他下游深度学习模块进行端到端训练。据我们所知,该模型是第一个大大优于提供的基线并达到接地扫描(GSCAN)的最先进性能的模型,这是一种接地的自然语言导航数据集,旨在在其测试分裂中需要系统的概括。

Systematic Generalization refers to a learning algorithm's ability to extrapolate learned behavior to unseen situations that are distinct but semantically similar to its training data. As shown in recent work, state-of-the-art deep learning models fail dramatically even on tasks for which they are designed when the test set is systematically different from the training data. We hypothesize that explicitly modeling the relations between objects in their contexts while learning their representations will help achieve systematic generalization. Therefore, we propose a novel method that learns objects' contextualized embeddings with dynamic message passing conditioned on the input natural language and end-to-end trainable with other downstream deep learning modules. To our knowledge, this model is the first one that significantly outperforms the provided baseline and reaches state-of-the-art performance on grounded-SCAN (gSCAN), a grounded natural language navigation dataset designed to require systematic generalization in its test splits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源