论文标题
全息无间隙电荷密度波中的相放松和图案形成
Phase relaxation and pattern formation in holographic gapless charge density waves
论文作者
论文摘要
我们研究在存在弱显式来源的全息模型中自发翻译对称性破坏的动力学。我们表明,与常规的量子电荷密度波系统不同,该动力学的特征是有效的依赖时间的金茨堡 - 兰道方程,无论是高于临界温度的高于和低于临界温度,这导致了金属绝缘体相变的“无间隙”代数模式。在此框架中,我们阐明了阻尼金石模式(Phason)的性质,该模式(phason)早在固定电荷密度波的有效流体力学理论中被鉴定出来,并在全息均匀的晶格模型中观察到。我们遵循具有周期性不均匀或螺旋均匀的空间结构的模型中的跨动力相变的准模式的运动,这表明相位弛豫率在临界温度下是连续的。此外,我们发现破碎相的定性低能动力学是通用的,对翻译对称性破坏的精确模式不敏感,因此也适用于均匀的模型。
We study the dynamics of spontaneous translation symmetry breaking in holographic models in presence of weak explicit sources. We show that, unlike conventional gapped quantum charge density wave systems, this dynamics is well characterized by the effective time dependent Ginzburg-Landau equation, both above and below the critical temperature, which leads to a "gapless" algebraic pattern of metal-insulator phase transition. In this framework we elucidate the nature of the damped Goldstone mode (the phason), which has earlier been identified in the effective hydrodynamic theory of pinned charge density wave and observed in holographic homogeneous lattice models. We follow the motion of the quasinormal modes across the dynamical phase transition in models with either periodic inhomogeneous or helical homogeneous spatial structures, showing that the phase relaxation rate is continuous at the critical temperature. Moreover, we find that the qualitative low-energy dynamics of the broken phase is universal, insensitive to the precise pattern of translation symmetry breaking, and therefore applies to homogeneous models as well.